

 We use cookies for commenting and analytics. For more details, please visit our privacy page.

 Decline
 Allow

 Ugrás a tartalomhoz

 	Articles
	Snippets
	About
	Cone
	Spruce CSS Framework

 Tiwtter

 GitHub

	

 Search

 Home Laravel PDF Rendering with WKHTML and Laravel

 PDF Rendering with WKHTML and Laravel

 by Gergő D. NagyLaravelPosted on Apr 9, 2019

 Tagged in pdf

 Share on Facebook,
 Linkedin,
 Twitter

 Formerly we wrote an article about DOMPDF and Laravel. That solution is working well when you need to render a small PDF. But what if you have a multi-page document that you need to render? You can use WKHTML and integrate it with Laravel.

Warming Up

First of all, if you want a quick and ready solution, you may use this package. But in case, you would not use all the functionality what the package offers, or you don’t want another dependency that brings another dependency, you may create a simple integration with the base package, called Snappy.

Like the previous post, our approach will be very similar. Creating the service and the provider where we bind the service to the container. Then we bring the basic config and prepare the controller where the PDF can be rendered to view or download.

Need a WordPress website? Or you prefer the more performant headless and static solutions? We can help!

The PDF Service

The first thing to do is to install the WKHTML binary and Snappy package. We can do both with composer. It depends on your machine, which WKHTML you have to pull in. Here you can find an indication. For me, the proper command was composer require h4cc/wkhtmltopdf-amd64.

Then we need to install Snappy, also via composer: composer require knplabs/knp-snappy. Now, all the dependecies are ready, we can prepare the PDF service.

namespace App\Services;

use App\Invoice;
use Knp\Snappy\Pdf as Snappy;
use Illuminate\Support\Facades\View;

class Pdf extends Snappy
{
 /**
 * Initialize a new pdf instance.
 *
 * @param array $config
 * @return void
 */
 public function __construct(array $config = [])
 {
 parent::__construct($config['binary'], $config['generator']);
 }

 /**
 * Render the PDF preview.
 *
 * @param \App\Invoice $invoice
 * @return string
 */
 public function render(Invoice $invoice)
 {
 return $this->getOutputFromHtml(
 View::make('your.blade.template', compact('invoice'))->render()
);
 }
}

It’s very similar to the DOMPDF approach. Here also, we pass an invoice to the renderer, but of course, you can totally pass anything you need here.

Registering the Service in Provider

We can make the new provider by running the php artisan make:provider PdfServiceProvider.

namespace App\Providers;

use App\Services\Pdf;
use Illuminate\Support\ServiceProvider;
use Illuminate\Contracts\Support\DeferrableProvider;

class PdfServiceProvider extends ServiceProvider implements DeferrableProvider
{
 /**
 * Register the application services.
 *
 * @return void
 */
 public function register()
 {
 $this->app->bind(Pdf::class, function ($app) {
 return new Pdf($app['config']['pdf']);
 });
 }

 /**
 * Get the services provided by the provider.
 *
 * @return array
 */
 public function provides()
 {
 return [Pdf::class];
 }
}

Please note, since Laravel 5.8, the $defer property is deprecated. Deferred providers must implement the DeferrableProvider contract.

So nothing extra here. We bind the service to the container and automatically pass the configuration to the instance. It means, whenever we use the automatic resolution from the container, the configuration is automatically injected and we don’t need to bother with that. Talking of configuration, let’s see the config file.

The Basic Configuration

The basic config should look like this. We specify the binary path, but also, you may pass the path from the .env file.

// config/pdf.php

<?php

return [

 'binary' => env('WKHTML_PATH', realpath(h4cc\WKHTMLToPDF\WKHTMLToPDF::PATH)),

 'generator' => [
 'images' => true,
 'no-images' => false,
 'encoding' => 'utf-8',
 'disable-smart-shrinking' => true,
 'page-size' => 'A4',
 'margin-top' => 0,
 'margin-left' => 0,
 'margin-right' => 0,
 'margin-bottom' => 0,
],

];

The PDF Controller

The controller is basically the same as the DOMPDF’s controller. First let’s generate the controller with the php artisan make:controller PdfController command. Then define the route for the controller in the web routes file.

Route::get('invoice/{invoice}', 'PdfController');

Now, let’s see the controller itself:

namespace App\Http\Controllers;

use App\Invoice;
use App\Services\Pdf;
use Illuminate\Http\Request;

class PdfController extends Controller
{
 /**
 * The pdf instance.
 *
 * @var \App\Services\Pdf
 */
 protected $pdf;

 /**
 * Create a new controller instance.
 *
 * @param \App\Services\Pdf $pdf
 * @return void
 */
 public function __construct(Pdf $pdf)
 {
 $this->middleware('auth');

 $this->pdf = $pdf;
 }

 /**
 * Generate the PDF to inspect or download.
 *
 * @param \Illuminate\Http\Request $request
 * @param \App\Invoice $invoice
 * @return \Illuminate\Http\Response
 */
 public function __invoke(Request $request, Invoice $invoice)
 {
 return response($this->pdf->render($invoice), 200)->withHeaders([
 'Content-Type' => 'application/pdf',
 'Content-Disposition' => ($request->has('download') ? 'attachment' : 'inline') . "; filename='invoice-{$invoice->id}.pdf'",
]);
 }
}

So, what’s going on? When the user hits the invoice route, we render the PDF. If the query string contains the download key, the PDF will be downloaded, otherwise, it will be inline and readable from the browser.

Closing up

This approach is suggested when you have a bigger document (let’s say 10+ pages) that you need to render. Also, if your setup is not proper, you may have some errors, that is not so easy to debug. For example, make sure you have a compatible libssl installed on your machine. Also, make sure the binaries are runnable.

 Need a web developer? Maybe we can help, get in touch!

Need a reliable, small web developer team? Try us! We develop with Laravel and Vue.js.

 Similar Posts

 More content in Laravel category

 Testing Your API in Laravel

 Laravel Posted on Jun 6, 2017

 Extend the Paginator’s Query String

 Laravel Posted on Apr 2, 2018

 Working with View Composers

 Laravel Posted on Feb 28, 2017

 	Privacy Policy
	Terms of Use
	Legal Notice
	Advertisement

 Some rights reserved © Cone - Laravel and WordPress development 2017 - 2024

 System
Dark
Light

